
ABSTRACT

This thesis studies the theory of fuzzy topological spaces and its relation to

general topological spaces. We begin with an introduction to fuzzy sets and

then work on two well-known definitions for fuzzy topology: Chang’s original

definition and Lowen’s improved version, which solves key problems in terms

of continuity and compactness. Furthermore, we study the mutually generative

relations between fuzzy and general topologies by the function ω and ι, em-

phasizing their connections to each other. Finally, we systematically analyze

the concepts of continuity and compactness under these two definitions and

study in depth the relations and implications between them.
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Compactness, Topological Space.
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CHAPTER 1

INTRODUCTION

The theory of fuzzy topological spaces is an extension of general topology. Generally,

topological concepts use exact binary logic to express whether they belong to a set or not.

However, many real-life concepts are not ‘either/or’; for example, the boundaries of the

ocean change with the ebb and flow of the tides, and therefore cannot simply be represented

by a line. Pests and diseases tend to start from a single original spot and gradually spread to

the surrounding areas, and the degree of damage is also gradually decreasing, so a disaster

cannot simply be evaluated by whether it is affected or not.

To express information more objectively, there is an acute need to solve the problem of

applications involving imprecise or uncertain data. This need for a more detailed and nu-

anced understanding of the membership of sets led to the development of fuzzy set theory,

introduced by Lotfi Zadeh in the 1960s [Zad65], which in turn led to the study of fuzzy

topology.

The theory of fuzzy topological spaces originated from the fundamental work of Zadeh,

and mathematicians such as C. L. Chang and Robert Lowen played a key role in establish-

ing and refining the field. In 1968, Chang introduced the concept of a fuzzy topological

space [Cha68], which adapts the general topology to the degree of membership rather than

the degree of binary inclusion. His framework allowed elements to belong to open sets

with different degrees of membership, providing a more flexible model for analyzing situa-

tions characterized by uncertainty. Chang’s foundational work has opened up new methods

for the application of topology in fuzzy environments and laid the groundwork for further

research. However, over time, the limitations of Chang’s framework became apparent, es-

pecially concerning the continuity of constant functions. Aware of these problems, Robert

Lowen introduced a revised definition [Low76] in 1976 to ensure the continuity of constant

functions in fuzzy topological spaces. Lowen’s improvements brought fuzzy topological

spaces closer to general topology, strengthened the theoretical foundations of the field, and

led to its recognition as a powerful area of mathematical research.
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Fuzzy topological spaces provide a framework that combines fuzzy set theory with general

topology, allowing the possibility of exploring spaces where the degree of membership of

each element is between 0 and 1. In this way, we can apply the extension of classical

concepts such as continuity and compactness to environments characterized by degrees of

membership that are either graded or partial, opening up new possibilities for analysis, and

applications in uncertain or imprecise environments.

This thesis aims to systematically study the fundamentals and properties of fuzzy topolog-

ical spaces, focusing on fuzzy continuous functions and compactness in this broad frame-

work. The main objective is to contribute to the theoretical foundations of fuzzy topology

and to explore its practical implications. Chapter 2 introduces the basic background of

fuzzy sets and discusses the basic operations of fuzzy set theory. Chapter 3 delves into the

concepts of fuzzy topology (Chang’s), defines fuzzy topological spaces and examines their

properties and structure.

The next chapters build on these foundations to explore advanced topics such as fuzzy con-

tinuity and compactness. Chapter 4 discusses Lowen’s definition and the fuzzy continuous

functions, which are an extension of classical continuity and are fundamental to under-

standing mappings between fuzzy topological spaces. Chapter 5 explores the concept of

compactness in fuzzy topology. Finally, Chapter 6 discusses the applications and potential

for the future of fuzzy mathematics.

Through a comprehensive study of these topics, we seek to deepen the understanding of

fuzzy topology as a theoretical framework and tool for applied mathematics. The findings

of this thesis are intended to help the wider mathematical community understand how fuzzy

topological concepts can be applied to practical real-world scenarios where uncertainty

plays a central role.
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CHAPTER 2

FUZZY SETS

The concept of fuzzy set is fundamental to fuzzy topological space. It was first introduced

by Lotfi Zadeh [Zad65] in 1964 as an extension of the classical set. Let us begin with the

concept of a fuzzy set.

2.1 Fuzzy Set and Crisp Set

We begin by introducing the concept of a membership function, which is fundamental to

the theory of fuzzy set and allows us to define degrees of membership for elements in X .

Definition 2.1.1. Membership Function [Zad65]

Let X be a subset of the real numbers R, denoted as X ⊆ R. A membership function

µ(x) on X is any function from X to a real closed unit interval I = [0, 1]. Namely, for all

x ∈ X

µ : X → [0, 1].

The value of µ at x representing the "grade of membership", quantifies the degree to all

x ∈ X , with µ(x) = 0 indicating no membership and µ(x) = 1 representing the full

membership.

Definition 2.1.2. Fuzzy Set [Zad65, ZN21]

Let X ⊆ R, and let µA : X → [0, 1] be the membership function for a set A ⊆ X . A fuzzy

set A is defined as the set of ordered pairs

A = (X,µA) = {(x, µA(x))|x ∈ X}

where µA(x) represents the degree of membership of the element x ∈ A.

Example 2.1.3. Consider the closed interval X = [0, 90]. Define the membership function

µ : X → [0, 1] as follows:

µ(x) =
x

120
, ∀x ∈ X.

Then (X,µ) is a fuzzy set.
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Example 2.1.4. Consider X ⊆ R. The membership function µ : X → [0, 1] is defined as:

µ(x) =
1

1 + x2
, ∀x ∈ X.

Since µ(x) ∈ [0, 1] for all x ∈ X , (X,µ) is a fuzzy set.

Definition 2.1.5. Characteristic Function

Let A ⊆ R. The characteristic function of the set A is a function χA : A → {0, 1} which

defined as

χA(x) =

1, if x ∈ A,

0, if x /∈ A.

Definition 2.1.6. Crisp Set [ZN21]

Let X ⊆ R. A crisp set in X is a set of ordered pairs A = (X,χA), where χA(x) is the

characteristic function.

Example 2.1.7. Let X = [0, 20], and define A = {x ∈ X|x ∈ Q}. Then for each x ∈ X ,

the characteristic function is given by:

χA(x) =

1, if x ∈ A,

0, if x /∈ A.

Then, (X,χA) is a crisp set.

Remark 2.1.8. Crisp set is a special subclass of fuzzy set, where the membership function

µ(x) is restricted to take only the values 0 or 1, corresponding to full exclusion or inclusion

in the set.

Let us look at the following definitions:

Definition 2.1.9. [Zad65]

Given a fuzzy set A = (X,µA) and for all x ∈ X ,

(a) Two fuzzy sets A and B are said to be equal, denoted as A = B, if µA(x) = µB(x).

(b) A is a subset of B, denoted as A ⊆ B, if µA(x) ≤ µB(x).

(c) A is an empty fuzzy set, denotes as A = ∅X , if µA(x) = 0.

(d) A is a fully included fuzzy set, denoted as A = ⊔X , if µA(x) = 1.
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2.2 Basic Operations of Fuzzy Sets

In this section, we will study the complement of fuzzy set and the union and intersection

of fuzzy sets.

Definition 2.2.1. Complement of a Fuzzy Set [Zad65]

Given a fuzzy set A = (X,µA), its complement Ac is defined by the following membership

function:

µAc(x) = 1− µA(x), ∀x ∈ X.

Example 2.2.2. Let X = [0, 90] and define µA : X → [0, 1] by

µA(x) =
x

90
, ∀x ∈ X.

Then A = (X,µA) is a fuzzy set. The complement of A is defined as Ac = (X,µAc) is

defined as

µAc(x) = 1− x

90
, ∀x ∈ X.

Figure 2.1: Fuzzy set A and its complement Ac.

Definition 2.2.3. Union and Intersection [Zad65]

Given an index set J and a family of fuzzy sets Aj = (X,µAj
)j∈J , we define

5



• the union of fuzzy sets as ⋃
j∈J

Aj = (X,µ ⋃
j∈J

Aj
)

where

µ ⋃
j∈J

Aj
(x) := sup

j∈J
{µAj

(x)} for all x ∈ X.

In particular, when J is finite, then

µ ⋃
j∈J

Aj
(x) = max

j∈J
{µAj

(x)} for all x ∈ X.

• the intersection of fuzzy sets as⋂
j∈J

Aj = (X,µ ⋂
j∈J

Aj
)

where

µ ⋂
j∈J

Aj
(x) = inf

j∈J
{µAj

(x)} for all x ∈ X.

In particular, when J is finite, then

µ ⋂
j∈J

Aj
(x) = min

j∈J
{µAj

(x)} for all x ∈ X.

Theorem 2.2.4. [Zad65]

If A and B are two fuzzy sets, then

(1) (A ∪B)c = Ac ∩Bc (by De Morgan’s Laws),

(2) (A ∩B)c = Ac ∪Bc,

(3) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (by Distributive Laws),

(4) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Proof. Consider 1 − max{µA, µB} = min{1 − µA, 1 − µB} for the case µA < µB and

µA > µB. For case µA < µB, then A ⊆ B and hence 1 − µA > 1 − µB. This shows

Bc ⊆ Ac. Similarly, for case µA > µB, then B ⊆ A and hence 1 − µB > 1 − µA. This

shows Ac ⊆ Bc and we have (1). Similar for (2).

For (3), we have max{µA,min{µB, µC}} = min{max{µA, µB},max{µA, µC}}. It is easy

to check this equality by considering six cases:
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1. µA > µB > µC ,

2. µA > µC > µB,

3. µB > µA > µC ,

4. µB > µC > µA,

5. µC > µA > µB,

6. µC > µB > µA.

Similar for (4).
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CHAPTER 3

FUZZY TOPOLOGICAL SPACE

In this chapter, we will study the well-established concepts of general topology to fuzzy

sets. Before we study fuzzy topological spaces, it is important to first recall the fundamen-

tals of general topological spaces, as they serve as the basis for this generalization.

3.1 General Topological Spaces

Definition 3.1.1. General Topological Space [Mun00, Teo23]

Given a set X , a topology on X is a collection of T of subsets of X that satisfies the

following properties:

(1) ∅, X ∈ T .

(2) Any arbitrary union of members of τ belongs to T .

(3) The intersection of finite number of members of τ belongs to T .

If τ is a topology for X , then the pair (X,T ) is a topological space.

Given a topological space (X,T ), we say that a subset U of X is an open set of X if

U ∈ T .

Definition 3.1.2. Discrete Topology and Indiscrete Topology [Mun00, Teo23]

Let X be a nonempty set. Then

1. The family of all subsets of X , known as the power set P (X), is a topology on X

and it is defined as discrete topology.

2. The collection of set consisting ∅ and X is a topology on X and it is defined as

indiscrete topology.

Definition 3.1.3. Neighbourhood [Mun00, Teo23]

Let X be a topological space and let x ∈ X . A set U is a neighbourhood of x if U is an

open set in X that contains x.
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Definition 3.1.4. Interior [Mun00, Teo23]

Given that X is a topological space and A ⊂ X , then the interior of A is the union of all

the open sets contained in A. It is denoted as int(A) or A0.

Definition 3.1.5. Finer and Coarser [Mun00, Teo23]

Suppose T1 and T2 are two topologies on a given set X . If T1 ⊆ T2, we say T2 is finer

than T1 or T1 is coarser than T2. If T1 ⊂ T2, we say T2 is strictly finer than T1 or T1 is

strictly coarser than T2.

Definition 3.1.6. Basis of Topology [Mun00, Teo23]

Given set X , let B be the collection of subsets of X . Then B is called a basis for a topology

on X if B satisfies the following properties:

(1) For all x ∈ X , there exists B ∈ B such that x ∈ B.

(2) If B1 and B2 are elements of B and x is an element of X such that x ∈ B1 ∩ B2, there

exists B3 ∈ B such that x ∈ B3 ⊂ B1 ∩B2.

If B satisfies these two conditions, then we define the topology T generated by B as fol-

lows: Given U ⊂ X , then U ∈ T if for all x ∈ U , there exists B ∈ B such that x ∈ B and

B ⊂ U .

Definition 3.1.7. Subbasis of Topology [Mun00, Teo23]

A subbasis σ for a topology on X is a collection of subsets of X whose union is equal to

X . The topology generated by the subbasis σ is defined to be the collection T of all union

of finite intersections of elements of σ.

3.2 Fuzzy Topological Spaces

Now, it is enough to study the concepts of fuzzy topological spaces.

Definition 3.2.1. Fuzzy Topological Space [Cha68, PL80a]

Given a set X , a fuzzy topology on X is a family δ = {Aj|j ∈ J } of fuzzy sets that

satisfies the following properties:

(1) ∅X ,⊔X ∈ δ.

(2) Closed under finite intersection: If A1, A2 ∈ δ, then A1 ∩ A2 ∈ δ.

(3) Closed under arbitrary union: If Aj ∈ δ for all j ∈ δ, then
⋃

j∈J Ai ∈ δ.
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If δ is a fuzzy topology for X , then the pair (X, δ) is a fuzzy topological space, or fts in

short.

Moreover, every member of δ is called an δ-open fuzzy set. A fuzzy set is closed if and

only if its complement is δ-open. In the sequel, if there is no confusion likely to arise, we

will simply call δ-open (closed) fuzzy set as an open (closed) set.

Same as general topology, the indiscrete fuzzy topology contains ∅X and ⊔X only, while

the discrete fuzzy topology contains all fuzzy sets.

Let δ, γ be two fuzzy topologies for X with δ ⊆ (⊂)γ, then we say γ is finer (strictly) than

δ or δ is coarser (strictly) than γ.

Definition 3.2.2. Basis of Fuzzy Topological Space [PL80a]

Let (X, δ) be a fts. A subfamily β of δ is called basis for δ if for each A ∈ δ, there exists

βA ⊆ β such that A =
⋃

βA. A subfamily σ of δ is called a subbasis for δ if the family

β = {
⋂
K|K is a finite subset of σ} is a basis for δ.

Example 3.2.3. Given two fuzzy sets on X such that µA, µB are both membership function

defined on X and X ⊆ R such that

µA =



0, when x ≤ 0 and x ≥ 50,

x

20
, when 0 < x < 20,

1, when 20 ≤ x ≤ 30,

50− x

20
, when 30 < x < 50.

And,

µB =



0, when x ≤ −20 and x ≥ 30,

20 + x

20
, when − 20 < x < 0,

1, when 0 ≤ x ≤ 10,

30− x

20
, when 10 < x < 30.

Then the union and intersection of two fuzzy sets are

µA∪B = max{µA(x), µB(x)} and µA∩B = min{µA(x), µB(x)}.

The family of fuzzy sets δ = {µA, µB, µA∪B, µA∩B} defined on X forms a fts.
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Figure 3.1: Fuzzy topology defined on X.

Definition 3.2.4. Neighbourhood [Cha68]

A fuzzy set U in a fts (X, δ) is a neighbourhood, or nbhd for short, of a fuzzy set A if

there exists an open fuzzy set O such that A ⊆ O ⊆ U .

Theorem 3.2.5. Open Fuzzy Set [Cha68]

A fuzzy set A is open if and only if for every fuzzy set B contained in A, A is a nbhd of B.

Proof. Assume A is open. By definition 3.2.4, every fuzzy set B contained in A is also

contained in an open set. Moreover, since A ⊆ A, then we have B ⊆ O = A ⊆ A. Hence,

A is the nbhd of B. Conversely, assume that for every fuzzy set B that contained in A, A

is a nbhd of B, since A ⊆ A, A is a nbhd of itself. Then there is an open set O such that

A ⊆ O ⊆ A. This shows A = O. Hence A is an open fuzzy set.

Theorem 3.2.6. Intersection of Finite Neighbourhood [Cha68]

If U is a nbhd system of a fuzzy set A, then the finite intersection of members of U belongs

to U , and each fuzzy set that contains a member of U belongs to U .
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Proof. Suppose U = {U1, U2, . . . , Un} is a nbhd system of a fuzzy set A, then there

exists O1, O2, . . . , On be respectively open fuzzy set such that A ⊂ Oi ⊂ Ui where

i = 1, 2, . . . , n. Since ∩n
i=1Ui contains ∩n

i=1Oi and it is a nbhd of A, this shows ∩k
i=1Ui

is a nbhd system of A for k = 2, . . . , n. Hence, the finite intersection of members of U

belongs to U . If a fuzzy set B contains a member of U , then it contains an open nbhd of

A, and B is an open nbhd of A. Hence, B is belongs to U .

Remark 3.2.7. This theorem ensures that the finite intersection of open nbhd of a fuzzy

set A is still an open nbhd of A.

Definition 3.2.8. Interior Fuzzy Set [Cha68]

Let A, B be fuzzy sets in a fts (X, δ) and let B ⊆ A. Then B is called an interior fuzzy set

of A if A is a nbhd of B. The union of all interior fuzzy sets of A is called the interior of

A and is denoted by int(A).

Theorem 3.2.9. [Cha68]

Consider fts (X, δ). For every A ∈ δ, int(A) is open and it is the largest open fuzzy set

contained in A.

Proof. For a given fuzzy set A, let Bα be the interior fuzzy sets of A where α ∈ A. Let

Oλ be the open fuzzy sets where λ ∈ Λ such that Oλ ⊆ A. Let λ be the map from

A to Λ. By definition 3.2.4 and definition 3.2.8, for every Bα there is a Oλ(α) such that

Bα ⊆ Oλ(α) ⊆ A. Notice that the choice of Oλ(α) might not be unique since it is possible

that Oλ(α1) = Oλ(α2) for α1 ̸= α2 where α1, α2 ∈ A. In particular, every Oλ is also an

interior fuzzy set of A. Since Oλ ⊆ Oλ ⊆ A. This shows {Oλ}λ∈Λ is a subcollection of

{Bα}α∈A. Hence,

int(A) =
⋃
α∈A

Bα ⊆
⋃
α∈A

Oλ(α) ⊆
⋃
λ∈Λ

Oλ,

and since {Oλ}λ∈Λ is a subcollection of {Bα}α∈A, it shows⋃
λ∈Λ

Oλ ⊆
⋃
α∈A

Bα = int(A).

Therefore,

int(A) =
⋃
α∈A

Bα =
⋃
λ∈Λ

Oλ = int(A).

12



Since O =
⋃

λ∈ΛOλ is the union of open fuzzy sets, it is also an open fuzzy set and

contains all open fuzzy sets Oλ in A. Hence, int(A) is open and it is the largest open fuzzy

set contained in A.

Since int(A) is the largest open fuzzy set contained in A, it leads us to the following corol-

lary.

Corollary 3.2.10. [Cha68]

The fuzzy set A is open if and only if A = int(A).

Proof. If A is open, then A ⊆ int(A). Since int(A) is the largest open fuzzy set contained

in A, then A = int(A). Conversely, assume A = int(A). By theorem 3.2.9, A is an open

set.

3.3 Sequences of Fuzzy Sets

Definition 3.3.1. Convergence of Fuzzy Set [Cha68]

A sequence of fuzzy sets {An, n = 1, 2, . . .} is said to be eventually contained in a fuzzy

set A if there is an integer m such that, if n ≥ m, then An ⊂ A. If the sequence {An}
is in a fts (X, δ), then we say the sequence converges to a fuzzy set A if and only if it is

eventually contained in each nbhd of A.

Definition 3.3.2. Cluster Fuzzy Set [Cha68]

A sequence of fuzzy sets {An, n = 1, 2, . . .} is said to be frequently contained in a fuzzy

set A if for each integer m there is an integer n such that n ≥ m, and An ⊂ A. If the

sequence {An} is in fts (X, δ), then a fuzzy set A is a cluster fuzzy set of {An} if and

only if {An} is frequently contained in every nbhd of A.

Definition 3.3.3. [Cha68]

Let N be the map from the set of non-negative integers to the set of non-negative integers.

Then the sequence {Bi, i = 1, 2, . . .} is a subsequence of a sequence {An, n = 1, 2, . . .}
if there is a map N such that Bi = AN(i) and for each integer m there is an integer n such

that N(i) ≥ m whenever i ≥ n.

Theorem 3.3.4. [Cha68]

If the nbhd system of each fuzzy set in a fts (X, δ) is countable, then

13



(a) A fuzzy set A is open if and only if each sequence of fuzzy set {An, n = 1, 2, . . .}
which converges to a fuzzy set B contained in A is eventually contained in A.

(b) If A is a cluster fuzzy set of a sequence {An, n = 1, 2, . . .} of fuzzy sets, then there is

a subsequence of the sequence converging to A.

Proof. (a) Assume A is open, then for every fuzzy set B that contained in A, A is a nbhd

of B. By definition 3.3.2, if {An} is converges to B, then there is an integer m ∈ Z
such that for all n ≥ m, An ⊆ B. Since A is a nbhd of B, {An} is eventually

contained in A.

Conversely, assume that each sequence of fuzzy set {An, n = 1, 2, . . .} which

converges to a fuzzy set B contained in A is eventually contained in A. Then for each

B ⊆ A, let {Un|n = 1, 2, . . .} be the nbhd system of B and let Vn =
⋂n

i=1 Ui. Then

{Vn|n = 1, 2, . . .} is a sequence of nbhd that converges to B. By definition 3.3.2, it is

eventually contained in each nbhd of B. This shows ∃m ∈ N such that ∀n ≥ m,

{Vn} ⊆ B ⊆ A. Since {Vn} is nbhd system of B and {Vn} ⊆ A, by theorem 3.2.5, A

is open.

(b) Let {Un|n = 1, 2, . . .} be the nbhd system of A. Then, let Sn =
⋃n

i=1 Ui such that

Sn+1 ⊆ Sn for each n ∈ N. This shows the sequence {Sn} is decreasing. Then for

every non-negative i, by definition 3.3.3, we may choose N(i) such that N(i) ≥ i and

AN(i) ⊂ Si. This shows N(i) maps i to an index set in {An} such that AN(i) ⊂ Si.

Clearly, {AN(i)} is a subsequence of {An}. Since {Sn} is converges to A, {AN(i)}
must converges to A.
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CHAPTER 4

FUZZY CONTINUOUS FUNCTION

The concept of continuous is very important in Mathematics. In this chapter, we will study

the continuous function between a fuzzy topological space to another fuzzy topological

space.

4.1 Lowen’s Fuzzy Topological Space

Before we study fuzzy continuity, let us look at another definition of fuzzy topological

space. Let us recall the definition of Chang’s[Cha68].

Definition 4.1.1. [Cha68]

Given a set X , a fuzzy topology on X is a family δ = {Aj|j ∈ J } of fuzzy sets that

satisfies the following properties:

(1) ∅X ,⊔X ∈ δ.

(2) Closed under finite intersection: If A1, A2 ∈ δ, then A1 ∩ A2 ∈ δ.

(3) Closed under arbitrary union: If Aj ∈ F for all j ∈ δ, then
⋃

j∈J Ai ∈ δ.

If δ is a fuzzy topology for X , then the pair (X, δ) is a fuzzy topological space.

However, Lowen [Low76] pointed out that under Chang’s definition, constant functions

between fuzzy topological spaces are not necessarily continuous. This is a significant de-

viation from general topology, where constant functions are trivially continuous. Lowen

supports his argument by providing concrete examples, which highlight the shortcomings

of Chang’s definition. To solve this issue, Lowen introduced an alternative definition that

guarantees the continuity of constant functions, ensuring greater consistency with general

topological concepts.

Definition 4.1.2. Lowen’s Fuzzy Topological Space [Low76]

Given a set X , a fuzzy topology on X is a family δ = {Aj|j ∈ J } of fuzzy sets that

satisfies the following properties:

(1) ∀ constant fuzzy set α, α ∈ δ.
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(2) Closed under finite intersection: If A1, A2 ∈ δ, then A1 ∩ A2 ∈ δ.

(3) Closed under arbitrary union: If Aj ∈ δ for all j ∈ δ, then
⋃

i∈J Ai ∈ δ.

If δ is a fuzzy topology for X , then the pair (X, δ) is a fuzzy topological space.

We will use this concept of fuzzy topology throughout the sequel. For Chang’s definition,

we will refer to quasi fuzzy topology.

4.2 The Function ω and ι

Let J (X) be the family of all topologies on X and W (X) be the set of all fuzzy topologies

on X . On R, we consider the topology Jr = {(α,∞) ∪ {∅}|α ∈ R}. The topological

space one obtains unit interval I the induced topology on Jr is denoted as Ir. Then we

define the following maps.

Definition 4.2.1. Topologically Generated [Low76]

For the sets J (X) and W (X), we define the mapping

ι : W (X) → J (X)

δ 7→ ι(δ)

where ι(δ) is a initial topology on X for the family of "function" δ and the topological

space Ir. Then we define the mapping

ω : J (X) → W (X)

T 7→ ω(T )

where ω(J ) = C (J , Ir) is a continuous function from (X,J ) to Ir. For every δ ∈
W (X), δ is said to be topologically generated if δ = ω(T ) for some T ∈ J (X).

Remark 4.2.2.

(a) Jr is a topology.

• ∅ is open. R =
⋃
k∈R

(−k,∞) is open.

• Any union of open sets forms an open set. The finite intersection of open sets

also forms an open set. Namely,
⋂n

m=1(αm,∞) = (max{α1, . . . , αn},∞) is an

open set in R.
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(b) Ir = {(α, 1]|∀α ∈ R} is an induced topology.

• For α ≤ 0, [0, 1] is an open in Ir.

• For 0 < α < 1, (α, 1) is an open set in Ir.

• For α ≥ 1, ∅ is an open set in Ir.

(c) ι(δ) = T is a topology.

• Fixed r where (r, 1] ∈ Ir. For every α ∈ δ, ι(α) =

∅, if α ≥ r,

X, if α < r.

• ι(
⋃

i δi) =
⋃

i ι(δi) and ι(
⋂n

i δi) =
⋂n

i ι(δi) are both open set in T .

Hence, we can conclude for every δ ∈ W (X),

ι(δ) = {ιr(µ) | ∀r ∈ [0, 1], ∀µ ∈ δ} where ιr(µ) = {x ∈ X,µ(x) > r}.

Hence ιr : δ → ιr(δ) is indeed a continuous function since it maps from an open set in

δ to another open set in T .

(d) Notice that ω(T ) is a continuous function from (X,T ) to Ir if and only if for every

r ∈ [0, 1],

µ−1((r, 1]) = {x ∈ X |µ(x) > r} is open in X.

Moreover, ω(T ) is a lower semicontinuous function from (X,T ) to I which equipped

by Euclidean topology for every T ∈ J (X).

Proposition 4.2.3. [Low76]

(1) ι ◦ ω = idT (X).

(2) ι and ω are respectively an isotone surjection and isotone injection.

(3) ω ◦ ι(δ) is the smallest topologically generated fuzzy topology which contains δ and it

is denoted as δ̄.

(4) δ is topologically generated if and only if δ = δ̄.

Proof. (1) Notice that ω(J ) = C (X, Ir). By remark (c) and (d), we have

ι(ω(J )) = id : J (X) → J (X).
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(2) Notice that if T1 ⊆ T2, then T2 is a refinement of T1.

For ι, if δ1 ⊆ δ2, then δ2 has more open fuzzy set than δ1. Then ι(δ2) has more open

set than ι(δ1). This shows ι(δ1) ⊆ ι(δ2). This shows ι is an isotone map. Now, for

every T ∈ J , ω(T ) ∈ W (X) is the element such that ι(ω(T )) = T . Hence, ι is

an isotone surjection.

For ω, for every T1,T2 ∈ J , if T 1 ⊆ T2, then ω(T1) ⊆ ω(T2). Hence, ω is an

isotone map. Assume ω(T1) = ω(T2), then we have

ι
(
ω(T1)

)
= ι

(
ω(T2)

)
⇔ T1 = T2

Hence, ω is an isotone injection.

(3) For every δ ∈ W (X), ι(δ) ∈ J (X) is a topology on X . Hence, ω(ι(δ)) is a topo-

logically generated fuzzy topology. Now, we want to show δ̄ = ω(ι(δ)) is the smallest

topologically generated fuzzy topology that contains δ.

Assume ∆ = ω(T ) is a topologically generated fuzzy topology for some T ∈ J (X).

If δ ⊆ ∆, we want to show δ̄ ⊆ ∆. Then, we have

δ ⊆ ω(T ) = ∆

ι(δ) ⊆ ι(ω(T )) = T

δ̄ = ω
(
ι(δ)

)
⊆ ω(T ) = ∆

This shows δ̄ is the smallest topologically generated fuzzy topology that contains δ.

Moreover, δ̄ =
⋂

δ⊆∆ ∆ where ∆ is topologically generated.

(4) If δ is topologically generated, then δ̄ is the smallest topologically generated fuzzy

topology that contains δ. Hence δ̄ = δ. Conversely, if δ = δ̄, then δ is topologically

generated.

Theorem 4.2.4. [Low76]

(X, δ) is topologically generated if and only if for each continuous function f ∈ C (Ir, Ir)

and for each ν ∈ δ, f ◦ ν ∈ δ.

Proof. Assume (X, δ) is topologically generated. Since ν ∈ C (T , Ir) = δ and f ∈
C (Ir, Ir), then f ◦ ν ∈ C (T , Ir) = δ.
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Conversely, assume µ ∈ δ̄. Recall that δ̄ = ω ◦ ι(δ). This shows µ ∈ C
(
ι(δ), Ir

)
. Since a

basis for ι(δ) is provided by the finite intersections
n⋂

i=1

ν−1
i

(
(ri, 1]

)
for some νi ∈ δ, ri ∈ I;

this is equivalent to saying for any r ∈ I , any x ∈ µ−1
(
(r, 1]

)
, (r, 1] is open in Ir and

µ−1(r, 1] is open in ι(δ) since µ ∈ C
(
ι(δ), Ir

)
. Hence, for every x ∈ µ−1(r, 1], there exists

finite open set (ri, 1] such that

x ∈
⋂

i∈Ir,x

ν−1
i

(
(ri, 1]

)
⊆ µ−1

i

(
(ri, 1]

)
.

Now, we want to show µ is closed under some finite intersection and arbitrary union of

basis of δ. Fix x and let µ(x) = kx ∈ (r, 1], then ∀x < kx, ∃ a finite index set Ir such that

x ∈
⋂
i∈Ir

ν−1
i

(
(ri, 1]

)
⊆ µ−1

i

(
(ri, 1]

)
.

Then, ∀r < kx and ∀i ∈ Ir, let

µi,r(y) =
(
(rχ(ii,1]

) ◦ νi
)
(y) =

r, if νi(y) > ri,

0, if νi(y) ≤ ri.

where µi,r ∈ δ and rχ(ii,1]
∈ C (Ir, Ir). This indeed follows from our assumption f ◦ ν for

all f ∈ C (Ir, Ir) and ν ∈ δ. Then, let νx
r = infi∈Ir{µi,r} ∈ δ. Since Ir is finite and hence

νx
r = mini∈Ir{µi,r}, then we have

νx
r (y) =

r, if ∀i ∈ Ir we have νi(y) > ri,

0, if ∃j ∈ Ir such that νi(y) ≤ rj.

Hence if νx
r (y) = r, then νi(y) > ri for all i ∈ Ir. Since

y ∈
n⋂

i=1

ν−1
i (ri, 1] ⊆ µ−1(r, 1],

therefore for every y ∈ [0, 1] we have µ(y) > r. This shows µ ≥ νx
r for every x ∈ µ−1(r, 1]

and r < kx. Now, it is easy to see that

µ = sup
x∈X

sup
r<kx

νx
r (y) ∈ δ.

Hence, if every µ ∈ δ̄, then µ ∈ δ. This shows δ̄ = δ which implies (X, δ) is topologically

generated.
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4.3 Function Between Two Fuzzy Sets

We first look at the function between two fuzzy sets. This will lead us to study the function

between two fts.

Definition 4.3.1. Function Between Two Fuzzy Sets [Cha68, PL80b]

Let f be a function from X to Y . Let B be a fuzzy set in Y with membership function

µB(x) for all x in X . Then the inverse of B, denoted as f−1[B], is a fuzzy set in X whose

membership function is given by

µf−1[B](x) = µB(f(x)) for all x ∈ X.

Conversely, let A be a fuzzy set in X with membership function µA(x) for all x in X . Then,

the image of A, denoted as f [A], is a fuzzy set in Y whose membership function is given

by

µf [A](y) =


sup

x∈f−1(y)

{µA(x)} if f−1(y) ̸= ∅,

0 otherwise,

for all x in X and y in Y where f−1(y) = {x|f(x) = y}.

Clearly, since f : X → Y is well-defined, these two equalities are true for all x in X . Now,

let us prove some theorem.

Theorem 4.3.2. [Cha68, PL80b]

Let f be a function from X to Y . Then,

(a) f−1[Bc] = (f−1[B])c for all B ∈ Y .

(b) (f [A])c ⊆ f [Ac] for all A ∈ X .

(c) If B1 ⊆ B2, then f−1[B1] ⊆ f−1[B2] for all B1, B2 ∈ Y .

(d) If A1 ⊆ A2, then f [A1] ⊆ f [A2] for all A1, A2 ∈ X .

(e) f [f−1[B]] ⊆ B for all B ∈ Y .

(f) A ⊆ f−1[f [A]] for all A ∈ X .

(g) Let f : X → Y and g : Y → Z. Then, (g ◦ f)−1[C] = f−1(g−1[C]) for all C ∈ Z,

where g ◦ f is the composition of g and f .
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Proof. (a) For all fuzzy sets B in Y , by definition 4.1.2, we have

µf−1[Bc](x) = µBc(f(x))

= 1− µB(f(x))

= 1− µf−1[B](x)

= µf−1[B]
c(x) ∀x ∈ X.

Then, we have proved the equality.

(b) For all fuzzy sets A in X , let us consider two cases:

(i) If f−1(y) ̸= ∅, then we have

µf [A]c(y) = 1− µf [A](y))

= 1− sup
x∈f−1(y)

{µA(x)} ∀x ∈ X.

And,

µf [Ac](y) = sup
x∈f−1(y)

{µAc(x)}

= sup
x∈f−1(y)

{1− µA(x)}

= 1− inf
x∈f−1(y)

{µA(x)} ∀x ∈ X.

This shows µf [A]c(y) ≤ µf [Ac](y) for all y ∈ Y .

(ii) If f−1(y) = ∅, by definition we have µf [A](y)) = 0. Then µf [A]c(y) = µf [Ac](y) =

1.

We has concluded that µf [A]c(y) ≤ µf [Ac](y) for all y ∈ Y . and thus we have the

inequality.

(c) For all fuzzy sets B1, B2 in Y where B1 ⊆ B2, then we have µB1
(f(x)) ≤ µB2

(f(x))

for all x ∈ X . Since µf−1[B](x) = µB(f(x)), then µf−1[B1]
(x) ≤ µf−1[B2]

(x). Then we

have proved the inequality.

(d) For all fuzzy sets A1, A2 in X where A1 ⊆ A2, then we have µA1
(x) ≤ µA2

(x) for all

x ∈ X . Let us consider two cases:

(i) If f−1(y) ̸= ∅, then µf [A](y) = sup
x∈f−1(y)

{µA(x)}. Then, we have µf [A1]
(y) ≤

µf [A2]
(y) for all y ∈ Y .
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(ii) If f−1(y) = ∅,µf [A1]
(y) = µf [A2]

(y) = 0 for all y ∈ Y .

Then, we have proved the inequality.

(e) For all fuzzy sets B in Y , let us consider two cases:

(i) If f−1(y) ̸= ∅, then we have

µf [f−1[B]](y) = sup
x∈f−1(y)

{µf−1[B](x)}

= sup
x∈f−1(y)

{µB(f(x))}

= µB(y) for all y ∈ Y.

(ii) If f−1(y) = ∅, then µf−1[f [B]](y) = 0 for all y ∈ Y . This shows µf−1[f [B]](y) ≤
µB(y) for all y ∈ Y .

Then, we have proved the inequality.

(f) For all fuzzy sets A in X ,

µf−1[f [A]](x) = µf [A](f(x))

= sup
x∈f−1(y)

{µA(x)} for all x ∈ X.

This shows µf−1[f [A]](x) ≥ µA(x) for all x ∈ X . Hence, we have proved the inequality.

(g) Let f be a function from X to Y and g be a function from Y to Z. Let C be a fuzzy set

in U3, then

µ(g◦f)−1[C](x) = µC(g(f(x)))

= µg−1[C](f(x))

= µf−1(g−1[C])(x) for all x ∈ X.

Then, we have proved (g ◦ f)−1[C] = f−1(g−1[C]) for all C ∈ Z.

4.4 Continuity of Fuzzy Topological Spaces

Definition 4.4.1. Fuzzy Continuous [Cha68, PL80b, Low76]

A function f̃ from a fts U1 = (X, δ) to another fts U2 = (Y, γ) is said to be fuzzy continuous,
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or F -continuous in short, if the inverse of each γ-open fuzzy set is an δ-open fuzzy set.

Namely, f̃ is F -continuous if and only if

µf−1[ν] ∈ δ ∀ν ∈ γ.

Corollary 4.4.2. [Cha68, PL80b]

If f̃ is a function from a fts U1 = (X, δ) to another fts U2 = (Y, γ) and g̃ is a function

from U2 = (Y, γ) to U3 = (Z, λ) where are both F -continuous, then the composition of

the functions g̃ ◦ f̃ is also F -continuous.

Proof. If f̃ : U1 → U2 and g̃ : U2 → U3 are both F -continuous, then

(g̃ ◦ f̃)−1[U3] = f̃−1(g̃−1[U3]).

For every µ ∈ δ, ν ∈ γ and η ∈ λ, since g̃−1[η] is γ-open and f̃−1[ν] is δ-open, hence

(g̃ ◦ f̃)−1[η] = f̃−1(g̃−1[η]) is δ-open. Hence, we have proved the composition of F -

continuous function is still a F -continuous function.

Let us study an example.

Example 4.4.3.

Consider two fts U = (X, δ) and V = (Y, γ) and two fuzzy sets: A ∈ δ and B ∈ γ. Then,

we define a function f : X → Y such that f(x) = 4 for all x ∈ X . By definition 4.3.1,

A = f−1[B] is a fuzzy set in X with the following membership function:

µf−1[B](x) = µB(4) = µB

(
f(x)

)
for all x ∈ X.

Notice that f : X → Y is a constant function. Under Chang’s definition, f−1[B] is not

an open fuzzy set since only ∅X and ⊔X are guaranteed to be part of the fuzzy topology.

Therefore, Lowen introduced a refined definition to solve this continuity problem based on

Chang’s definition.
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Figure 4.1: Fuzzy set A ∈ δ and B ∈ γ.

Definition 4.4.4. [Low76]

A function f̃ : (X, δ) → (Y, γ) is said to be continuous if f̃ :
(
X, ι(δ)

)
→

(
Y, ι(γ)

)
is

continuous. Namely,

f̃ ∈ C
(
(X,T ), (Y,P)

)
where T = ι(δ) and P = ι(γ).

Remark 4.4.5. If δ and γ is topologically generated, then δ = ω(T ) and γ = ω(P) for

some T ∈ J (X) and P ∈ J (Y ). Then we have ι(ω(T )) = T and ι(ω(P)) =

P . This leads us to study the continuous property between general topologies and fuzzy

topologies later.

Proposition 4.4.6. [Low76]

Consider the following properties for f̃ : (X, δ) → (Y, γ):

(1) f̃ is F -continuous.

(2) f̃ is continuous.

(3) f̃ : (X, δ̄) → (Y, γ̄) is F -continuous.

(4) f̃ : (X, δ̄) → (Y, γ) is F -continuous.

then we have (1) ⇒ (2) ⇔ (3) ⇔ (4).
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Proof. • (1) ⇒ (2)

Assume a basis for ι(δ) and ι(γ) are respectively given by
⋂n

i=1 µ
−1
i (ri, 1] and

⋂n
j=1 ν

−1
j (rj, 1]

where µi ∈ δ and νj ∈ γ. Recall that for f : X → Y ,

µi(x) = f−1
(
νj(x)

)
= νj

(
f(x)

)
∀x ∈ X.

If f̃ is F -continuous, then we have

f−1(νj) = νj
(
f(x)

)
= µi(x) ∈ δ ∀νj ∈ γ.

For each y ∈ ν−1
j (rj, 1] for some j, we have νj(y) ∈ (rj, 1]. Since ν−1

j (rj, 1] is an

open set in
(
Y, ι(γ)

)
, then we have

µi(x) = f−1(νj) = νj
(
f(x)

)
∈ (rj, 1] ⇒ x ∈ µ−1

i (rj, 1] ∀x ∈ X

where µ−1
i (rj, 1] is an open set in

(
X, ι(δ)

)
. Hence f̃ is continuous.

• (2) ⇔ (3)

Assume f̃ : (X, δ) → (Y, γ) is continuous. Since ω = C (J , Ir), then µ̃ ∈
C
(
(X,T ), Ir

)
and ν̃ ∈ C

(
(Y,P), Ir

)
are both continuous. Since f̃ is continuous,

then we have

µ̃−1
i (rj, 1] = f−1

(
ν̃−1
j (rj, 1]

)
∈ T

for every ν̃j(rj, 1] ∈ γ̄. Since µ̃i ∈ C
(
(X,T ), Ir

)
, then f̃ : (X, δ̄) → (Y, γ̄) is

F -continuous. Conversely, assume f̃ : (X, δ̄) → (Y, γ̄) is F -continuous. Notice

that ω
(
ι(γ)

)
= γ̄. Since f̃ : (X, δ̄) → (Y, γ̄) is F -continuous and δ̄ is the smallest

topologically generated fuzzy topology that contains δ, hence f̃ is continuous.

• (3) ⇔ (4)

Assume f̃ : (X, δ̄) → (Y, γ̄) is F -continuous. Then we define the function g and

g̃ such that g : Y → Y and g̃ : (Y, γ̄) → (Y, γ). Notice that γ̄ is the smallest

topologically generated fuzzy topology that contains γ, namely

ν ∈ γ̄ ,∀ν ∈ γ.

Hence g̃ is F -continuous. Since f̃ and g̃ are both F -continuous, thus g̃◦ f̃ : (X, δ̄) →
(Y, γ) is F -continuous. Conversely, assume f̃ : (X, δ̄) → (Y, γ) is F -continuous.

Since (1) ⇒ (2), thus f̃ :
(
X, ι(δ̄)

)
→

(
Y, ι(γ)

)
is continuous. By (2) ⇒ (3),

f̃ : (X, δ̄) → (Y, γ̄) is F -continuous.
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Corollary 4.4.7. [Low76]

Let C (X, Y ) be the set of all continuous function from (X, δ) to (Y, γ) and Cω(X, Y ) be

the set of all F -continuous function from (X, δ) to (Y, γ).If δ is topologically generated,

then

C (X, Y ) = Cω(X, Y ).

Proof. By proposition 4.4.6, we know f̃ : (X, δ̄) → (Y, γ) is F -continuous if and only if

f̃ : (X, δ) → (Y, γ) is continuous. If δ = δ̄, then we have C (X, Y ) = Cω(X, Y ).

Figure 4.2: If δ = δ̄, then we have the following commutative diagram.

Example 4.4.8. The inverse of corollary 4.4.7 is not true.

Consider two fts (X, δ) and (Y, γ) where X = I = [0, 1] and Y is arbitrary. Let δ be the

fuzzy topology on X with the subbasis

{constant α | ∀α} ∪ {y = x | ∀x ∈ [0, 1]}

and let γ be the discrete fuzzy topology on Y , i.e., γ = IY . Since γ is a discrete fuzzy

topology, thus ι(γ) is discrete. Since δ is generated by the subbasis {constant α | ∀α}∪{y =

x | ∀x ∈ [0, 1]}, then ι(δ) is connected. Since ι(δ) is connected and ι(γ) is discrete, any

function maps ι(δ) to ι(γ) must be a constant function. Hence we have

C (X, Y ) = {constant function from ι(δ) to ι(γ)}.

By proposition 4.4.6, we have Cω(X, Y ) ⊂ C (X, Y ). Since all constant functions are F -

continuous, thus Cω(X, Y ) = C (X, Y ). However, since ι(δ) = TIr = {[α, 1] ∀α ∈ [0, 1]}
and ω

(
ι(δ)

)
is finer than δ, hence δ is not topologically generated.
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Now, let us look at some theorem.

Theorem 4.4.9. [Cha68, PL80b]

Given f̃ is a function from fts U1 = (X, δ) to fts U2 = (Y, γ), then we have the following

statements and their relations: (a) ⇔ (b), (c) ⇔ (d), (a) ⇒ (c) and (d) ⇒ (e) where

(a) The function f̃ is F -continuous.

(b) The inverse of every fuzzy closed set is closed.

(c) For each fuzzy set A in U1, the inverse of every nbhd of f̃ [A] is a nbhd of A.

(d) For each fuzzy set A in U1 and each nbhd V of f [A], there is a nbhd W of A such that

f [W ] ⊆ V .

(e) For each sequence of fuzzy sets {An|n = 1, 2, . . .} in U1 which converges to a fuzzy

set A in U1, the sequence {f [An]|n = 1, 2, . . .} converges to f [A].

Proof. (i) (a) ⇔ (b)

If f̃ : U1 → U2 is F -continuous and B is a closed fuzzy set in U2, then f−1[Bc] is

open. Since f−1[Bc] = (f−1[B])c, thus f−1[B] is a closed fuzzy set. Conversely, let

B be a closed fuzzy set in (Y, γ). By assumption, f−1[B] is closed. Since f−1[Bc] =

(f−1[B])c and Bc are both open fuzzy sets, therefore f̃ is F -continuous.

(ii) (a) ⇒ (c)

If f̃ is F -continuous and A is a fuzzy set in U1, let V be the nbhd of f [A]. Then, V

contains an open fuzzy set O such that f [A] ⊆ O ⊆ V . Then we have f(f−1[A]) ⊆
f [O] ⊆ f [V ]. Since f is F -continuous, therefore f−1[O] is open. By definition 3.2.1,

f−1[V ] is a nbhd of A.

(iii) (c) ⇔ (d)

For every A ∈ U1, if V is a nbhd of f [A] and f−1[V ] is nbhd of A, then there exists

an open fuzzy set W such that A ⊆ W ⊆ f−1[V ]. By theorem 3.2.5W is open if and

only if it is a nbhd of A. Hence W is a nbhd of A and f [W ] ⊆ V . Conversely, since

A ⊆ f−1(f [A]), then A ⊆ W ⊆ f−1(f [W ]) ⊆ f−1[V ]. By our assumption, f−1[V ]

is a nbhd of A.

(iv) (d) ⇒ (e)

For each fuzzy set A ∈ U1 and every nbhd V of f [A],there is a nbhdW of A such that
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f [W ] ⊆ V . By definition 3.2.4, the sequence of fuzzy sets {An|n = 1, 2, . . .} ∈ U1

which converges to A is eventually contained in each nbhd of A. Then there exists

m ∈ N such that for all n ≥ m,An ⊆ W . For all n ≥ m, since f [An] ⊆ f [W ] ⊆ V ,

then f [An] is eventually contained in every nbhd of f [A]. This shows {f [An]|n =

1, 2, . . .} is converges to f [A].

Now, we are able to define fuzzy homeomorphism.

Definition 4.4.10. Fuzzy Homeomorphism [Cha68]

A fuzzy homeomorphism is an F -continuous one-to-one map f̃ of a fts U1 = (X, δ) onto

another fts U2 = (Y, γ) such that the inverse of the map is also F -continuous. Then, we

said U1 is F -homeomorphic to U2, or U1 is F -topologically equivalent to U2, if there is a

fuzzy homeomorphism f̃ : U1 → U2.

Remark 4.4.11. We can consider the category of fuzzy topological spaces and fuzzy con-

tinuous mapping in the same way as the category of general topological spaces and con-

tinuous mapping. Moreover, the functions ω and ι induce two covariant functors between

these two categories. Let G be the category of general topological spaces and F be the

category of fuzzy topological spaces, then we define

ω̃ : G → F where ω̃(X,T ) =
(
X,ω(T )

)
, ω̃(f̃) = f̃ and

ι̃ : F → G where ι̃(X, δ) =
(
X, ι(δ)

)
, ι̃(f̃) = f̃ .

By corollary 4.4.7, ω̃(G ) is a full subcategory of F .
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CHAPTER 5

COMPACT FUZZY TOPOLOGICAL SPACES

In this chapter, we will study the compactness on quasi fuzzy topological space. Let us

recall the concept of compactness from general topological spaces.

5.1 Compactness of General Topological Spaces

Definition 5.1.1. Cover and Subcover in General Topological Space [Mun00, Teo23]

In general topology, a collection A of subsets of a topological space (X,T ) is said to cover

X , or to be a covering of X , if the union of the elements of A is equals to X . Namely,

X ⊆
⋃
A∈A

A

If there is a subcollection of A also covers X , then we will call this subcollection as a

subcover.

Definition 5.1.2. Open Covering [Mun00, Teo23]

For a topological space (X,T ), a covering A is called an open covering of X if every

member of A is an open subset of X .

Definition 5.1.3. Compact Space [Mun00, Teo23]

A topological space (X,T ) is said to be compact if every open covering A of X contains

a finite subcollection that also covers X .

Corollary 5.1.4. Let a, b ∈ R with a < b, then the closed interval [a, b] is compact.

Proof. This corollary is general. The proof can be found in Munkres’s book, Topology,

Chapter 3, Section 27, Theorem 27.1, Page 172-173 [Mun00].

Definition 5.1.5. Finite Intersection Property [Mun00, Teo23]

Let X be a topological space, and let C = {Cα|α ∈ J} be a collection of subsets of X .

Then, C has the finite intersection property if α1, . . . , αn are finitely many elements of J ,

the intersection
⋂n

k=1Cαk
̸= ∅.
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Theorem 5.1.6. [Mun00, Teo23]

Let X be a topological space. Then the following statements are equivalent:

(a) X is compact.

(b) If C = {Cα|α ∈ J} is a collection of closed subset of X that has finite intersection

property, then
⋂

α∈J Cα ̸= ∅.

Proof. This theorem is general. The proof can be found in Munkres’s book, Topology,

Chapter 3, Section 26, Theorem 26.9, Page 169-170 [Mun00].

Theorem 5.1.7. Alexander Subbasis Theorem [Müg20]

Let (X,T ) be a topological space. If X has subbasis B such that every cover A =

{Bα |α ∈ B}of X by elements of B has a finite subcover, then X is compact.

Proof. This theorem is general. The proof can be found in Mueger’s book, Topology for

the Working Mathematician, Chapter 7, Page 128 [Müg20].

5.2 Compactness of Quasi Fuzzy Topological Spaces

In this section, we will discuss the compact structure of the fuzzy topology. Similar to the

general topology, we first define the open covering of fuzzy space.

Definition 5.2.1. Cover and Subcover in Fuzzy Space [Cha68]

Let A be a collection of fuzzy sets on X . For a fuzzy set B on X , A is said to be a covering

of B if

B ⊆
⋃
A∈A

A.

Moreover, this is equivalent to

sup
A∈A

{µA(x)} ≥ µB(x) ∀x ∈ X.

A subcover A′ of A is a subfamily of A which ia also a covering.

Definition 5.2.2. Open Covering in Fuzzy Topological Space [Cha68]

For a fuzzy set B on X and a (or quasi) fts U = (X, δ), a covering A is called an

open covering of B if every member of A is an open fuzzy set, or A ⊂ δ.
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Definition 5.2.3. Quasi Fuzzy Compactness [Cha68]

A quasi fts U = (X, δ) is said to be quasi fuzzy compact, or quasi F -compact in short, if

each open covering A of ⊔X has a finite subcover A′.

Remark 5.2.4. The following are equivalent:

• A fts U = (X, δ) is quasi F -compact.

• For every open covering A of ⊔X such that⋃
A∈A

A = ⊔X ,

there is an finite open subcover A′ of ⊔X such that⋃
A∈A′

A = ⊔X .

• For every open covering A of ⊔X such that

sup
A∈A

{µA(x)} = 1 ∀x ∈ X,

there is an finite open subcover A′ of ⊔X such that

max
A∈A′

{µA(x)} = sup
A∈A′

{µA(x)} = 1 ∀x ∈ X.

Definition 5.2.5. Finite Intersection Property [Cha68]

Let U be a quasi fts and let A = {Aα|α ∈ J} be a family of fuzzy sets. Then, A has

finite intersection property if and only if there is a finite subfamily A′ ⊆ A such that the

intersection ⋂
A∈A′

A ̸= ∅X .

Theorem 5.2.6. [Cha68]

A quasi fts U is quasi F -compact if and only if each family of closed fuzzy sets that finite

intersection property has a nonempty intersection.

Proof. Assume U is quasi F -compact and let A be a family of closed fuzzy sets in U .

Suppose the intersection of all closed sets in A is empty. Namely,⋂
A∈A

A = ∅X .
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By De Morgan’s Law, we have ⋃
A∈A

Ac = ⊔X .

Since U is quasi F -compact and the open set Ac forms an open cover of U , then there exists

a finite family A′ ⊆ A such that ⋃
A∈A′

A = ⊔X .

By applying De Morgan’s Law again, we have⋂
A∈A′

A = ∅X .

This contradicts the finite intersection property. Hence, the intersection of all closed sets in

A must be nonempty.

Conversely, assume that every family of closed fuzzy sets that satisfies the finite intersection

property has a nonempty intersection. Let A be an open cover of U . Then, let B = Ac be

the family of closed fuzzy sets corresponding to A. Since A covers U , we must have⋂
Ac∈B

Ac = ∅X .

By definition 5.2.5, there exists a finite subfamily B′ ⊆ B such that⋂
Ac∈B′

Ac = ∅X .

By De Morgan’s Law, there exists a finite subfamily A′ ⊆ A corresponding to B′ such that⋃
A∈A′

A = ⊔X .

Hence, U is quasi F -compact.

Theorem 5.2.7. [Cha68]

Let f be a F -continuous function mapping the quasi F -compact quasi fts U1 = (X, δ)

onto quasi fts U2 = (Y, γ). Then, U2 is quasi F -compact.

Proof. Let B be an open cover of U2. Then, we have⋃
B∈B

µf−1[B](x) = sup
B∈B

{µf−1[B](x)} = sup
B∈B

{µBf(x)} = 1 ∀x ∈ X.
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For all B ∈ B, the family of all fuzzy sets of the form f−1[B] is an open cover of X which

has a finite subcover. Since f is onto, for all B ∈ B, there exists an open fuzzy set A ∈ U1

such that f [A] = B and we have A = f−1[B]. Hence, the family of images of members of

the subcover is a finite subfamily of B that covers U2. Thus U2 is quasi F -compact.

5.3 Compactness of Fuzzy Topological Spaces

In [Cha68], Chang gives a definition of compactness for quasi fts which formally fol-

low the definition of compactness in general topology. Chang’s definition also be used in

[Won73] and [Gog73]. However, under this definition (X,T ) is compact does not implies(
X,ω(T )

)
is compact.

Let us look at a counter-example.

Example 5.3.1. Consider (X,T ) = Ir be the unit interval X = I with the usual topology.

A function y is linear if it has the form y = mx + c for some m, c ∈ R. Then for every

x ∈ X where x ̸= 0 and x ̸= 1, we define µx(y) by the following:

µx(y) =



1 , if y = x,

0 , if y ∈ [0,
x

2
] ∪ [

x+ 1

2
, 1],

2

x
y − 1 , if y ∈ [

x

2
, x],

− 2

1− x
y + 1 +

2x

1− x
, if y ∈ [x,

x+ 1

2
].

We also define for

x = 0, µ0(y) = −y + 1 ∀y ∈ I,

x = 1, µ1(y) = y ∀y ∈ I.

Then for all x ∈ I , we have µx ∈ ω(T ) and the following property:

sup
x∈I

{µx(y)} = 1 ∀y ∈ I.

However, there is not subfamily of ω(T ) has this property.
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Figure 5.1: Counter-example under Chang’s Definition.

Hence, Lowen has induced another form of compactness in [Low76].

Definition 5.3.2. Fuzzy Compact as A Fuzzy Set [Low76]

Let (X, δ) be a fts (or quasi fts). A fuzzy set B = (X,µB) is said to be a fuzzy compact

set, or F -compact set in short, if for all family A ⊂ δ such that

sup
A∈A

{µA(x)} ≥ µB(x) for all x ∈ X,

and for all ϵ > 0, there exists a finite subfamily A′ ⊂ A such that

max
A∈A′

{µA(x)} = sup
A∈A′

{µA(x)} ≥ µB(x)− ϵ for all x ∈ X.

Definition 5.3.3. Fuzzy Compact as A Fuzzy Topological Space [Low76]

A fts (or quasi fts) (X, δ) is said to be fuzzy compact if each constant fuzzy set in (X, δ)

is F -compact set.

Example 5.3.4. No fts can be quasi F -compact.

For a fts, ⊔X has a covering A = { constant α | ∀α ∈ [0, 1)}. But there is no finite

subfamily A′ of A such that ⊔X =
⋃

A∈A′ A.

Definition 5.3.5. Weakly Fuzzy Compact [Low76]

A fts (or quasi-fts ) (X, δ) is said to be weakly F-compact if ⊔X is F -compact set.

Theorem 5.3.6. [Low76]

A fuzzy topological space
(
X,ω(T )

)
if F -compact if and only if (X,T ) is compact.
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Proof. Recall that a fts is F -compact if every constant fuzzy set α in fts is a F -compact

set. Assume (X,T ) is compact. Let β ⊂ ω(T ) such that supµ∈β{µ} ≥ α > 0 and let

ϵ > 0 such that α > ϵ > 0. For all µ ∈ β, let µϵ = µ+ ϵ and [0, α] = Iα. Then, ∀µ ∈ β,

Q(µϵ) = {(x, α) |µϵ(x) > α}

is an open set in X × Iα. Since
⋃

µ∈β µ
ϵ = supµ∈β{µϵ} = supµ∈β{µ} + ϵ ≥ α, hence we

have

X × Iα ⊂
⋃
µ∈β

Q(µϵ).

This shows the family {Q(µϵ) |µ ∈ β} forms an open cover of X × Iα. Moreover, X × Iα

is compact in general topological sense, then there exists a finite subfamily β′ ⊂ β such

that

X × Iα ⊂
⋃
µ∈B′

Q(µϵ).

Hence we have supµ∈β{µ} ≥ α− ϵ which shows
(
X,ω(T )

)
is F -compact.

Conversely, assume
(
X,ω(T )

)
is F -compact. Suppose A ⊂ T is an open cover of X .

Then we have

X ⊂
⋃
A∈A

A ⇔ sup
A∈A

{χA(x)} = 1, ∀x ∈ X

where χA is the characteristic function of A. Then, choose ϵ ∈ (0, 1). Notice that χA is a

special case of fuzzy set. Since
(
X,ω(T )

)
is F -compact, then there exists A′ ⊂ A such

that

sup
A∈A′

{χA} ≥ 1− ϵ.

By definition of F -compact, A′ is a finite subfamily of A. Hence, (X,T ) is compact.

Proposition 5.3.7. [Low76]

If f̃ : (X, δ) → (Y, γ) is F -continuous and µ is a F -compact set in (X, δ), then f(µ) is a

F -compact set in (Y, γ).
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Proof. Let β ⊂ γ such that supν∈β{ν} ≥ f(µ), then we have supν∈β{f−1(ν)} ≥ µ. Since

f is F -continuous, then f−1(ν) ∈ δ. Notice that µ is a F -compact set, then for all ϵ > 0

there exists a finite subfamily β′ ⊂ β such that

sup
ν∈β′

{f−1(ν)} ≥ µ− ϵ.

Then we have

sup
ν∈β′

{ν} ≥ f(µ− ϵ) = f(µ)− ϵ

which shows f(µ) is a F -compact set in (Y, γ).

Moreover, since the inverse of the constant fuzzy set is still a constant function, then we

have the following proposition.

Proposition 5.3.8. [Low76]

If (X, δ) is F -compact and f̃ : (X, δ) → (Y, γ) is F -continuous, then (Y, γ) is F -compact.

Proof. Recall that a fts is F -compact if every constant fuzzy set is F -compact set. If

(X, δ) is F -compact, then every constant fuzzy set in δ is a F -compact set. By definition

4.3.1, the inverse of a constant fuzzy set is still a constant fuzzy set. By proposition 5.3.7,

for every constant fuzzy set β in γ, there is some F -compact constant fuzzy set α in δ such

that β = f(α) is a F -compact set. Hence we have (Y, γ) is F -compact.

Proposition 5.3.9. [Low76]

If (X, δ) is topologically generated F -compact, i.e. there exists a compact topology T

such that δ = ω(T ) , then every closed fuzzy set is a F -compact set.

Proof. Consider constant α such that αc ∈ ω(T ) and β ⊂ ω(T ) such that supµ∈β{µ} ≥
α. Since αc ∈ ω(T ), then we have

U (α) = {(x, r) |α(x) < r} is an open set in X × I.

Notice that X×I = U (α)∪U (α)c. Since X×I is compact and U (α)c is a closed subset

of X × I , thus U (α)c is compact. Choose ϵ > 0 and let

µϵ = µ+ ϵ.
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Notice that the value of µϵ can be larger than 1. Then ∀µ ∈ β, we define

Q(µϵ) = {(x, r) |µϵ(x) > r} ⊂ X × I

is an open set in X × I . Then we have U (α)c ⊂
⋃

µ∈β Q(µϵ). This shows the family

{Q(µϵ) |µ ∈ β} is an open covering of U (α)c. Since U (α)c is compact, then there exists

finite subfamily β′ ⊂ β such that

U (α)c ⊂
⋃
µ∈β′

Q(µϵ).

Since supµ∈β{µ} ≥ α, then supµ∈β{µϵ} ≥ α. This shows supµ∈β{µ} ≥ α − ϵ. Hence,

every closed fuzzy set is a F -compact set.

Remark 5.3.10. A F -compact (X, δ) is not necessarily that every closed fuzzy set is a

F -compact set. Counter-example will be given later.

Recall Alexander Subbasis Theorem in Section 5.1, theorem 5.1.7, we have a correspond-

ing theorem in fuzzy topological space. It will be used to study the products of F -compact

space. Let us look at the definition of finite character.

Definition 5.3.11. Finite Character [SF96]

A family F of sets is of finite character if

1. For each A ∈ F , every finite subset of A is belongs to F .

2. If every finite subset of a given set A belongs to F , then A belongs to F .

Lemma 5.3.12. Tukey Lemma

Let S be a non-empty set of finite character. Then S has an element which is maximal with

respect to the subset relation.

Proof. This lemma follows the axiom of choice, which is an equivalent of the Well-Ordering

Principle.

Theorem 5.3.13. [Low76]

(X, δ) is F -compact if and only if for any subbasis σ for δ, for any β ⊂ σ and for any

α > ϵ > 0 such that supµ∈β{µ} ≥ α, there exists a finite subfamily β′ ⊂ β such that

sup
µ∈β′

{µ} ≥ α− ϵ.
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Proof. The proof of this theorem can be found in Lowen’s paper, Section 4, Theorem 4.6

[Low76].

Theorem 5.3.14. [Low76]

(X, δ) is weakly F -compact if and only if for any subbasis σ for δ, for any β ⊂ σ such that

supµ∈β{µ} = 1 and for all ϵ > 0, there exists a finite subset β′ ⊂ β such that

sup
µ∈β′

{µ} ≥ 1− ϵ.

Proof. The proof of this theorem is similar to the proof of Theorem 5.3.13 with the restric-

tion α = 1.

Example 5.3.15. In remark 5.3.10, we have noticed that if µ is closed in a F -compact

(X, δ), then µ need not to be a F -compact set. Let us look at an example: Let X = I and

δ be the fuzzy topology with the following subbasis

{constant α} ∪ {µn |n ∈ N} ∪ {µ ∪ µc}

where for all n ∈ N,

µn(x) =


1

3
, for all x ∈ [0,

1

2
− 1

n+ 1
] ∪ [

1

2
+

1

n+ 1
, 1];

0, otherwise.

µ(x) =


0, if x =

1

2
;

1

3
, otherwise.

By theorem 5.3.13, for any constant a, there exists some a finite family β′ of σ such that

sup
α∈β′

{α} ≥ a− ϵ.

Hence, (X, δ) is F -compact. Notice that supn∈N{µn} = µ and µ is a closed fuzzy set since

µc ∈ δ. However, for any 0 < ϵ < 1
3
, there is no finite subfamily of {µn |n ∈ N} that

covers (µ− ϵ) ∪ 0.

Let us look at another example. By theorem 5.3.6,
(
X,ω(T )

)
is F -compact if and only if

(X,T ) is compact. Obviously, if
(
X, ι(δ)

)
is compact, then (X, δ) is F -compact. How-

ever, the converse is not true.
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Example 5.3.16. Let X = I and δ be the fuzzy topology with subbasis

{constant α} ∪ {ν |ν(x) = x or 0, ∀x ∈ X} ∪ {χ0}

where χ0 is the Dirac function at 0:

χ0(x) =

1, if x = 0;

0, otherwise.

By theorem 5.3.13, it is obvious to see that (X, δ) is F -compact by taking finite subfamily

{α′ |α′ = α− ϵ} where {α′} only contains one elements. However, since {ν} ∈ σ, ι(δ) is

discrete. Hence, ι(δ) is not compact.
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CHAPTER 6

CONCLUSION

6.1 Applications of Fuzzy Mathematics

One significant application of fuzzy topological spaces is fuzzy decision making system

[BY20]. This decision-making-system is the collection of single or multicriteria techniques

aiming at selecting the best alternative in case of imprecise, incomplete, and vague data.

Figure 6.1: Basic Configuration of Fuzzy Decision-Making-System

Moreover, in control systems, fuzzy topological concepts are used to design fuzzy con-

trollers that manage complex systems, like autonomous vehicles or industrial machinery,

where exact parameters may be unavailable.

In image processing [Per15], fuzzy topology improves edge detection and noise reduction

by considering gradual transitions between image regions instead of sharp boundaries. In

artificial intelligence and machine learning, it supports inference, clustering and classifica-

tion tasks under uncertainty, especially for datasets with fuzzy boundaries.

Additionally, fuzzy topological spaces find applications in economics, biological sciences,

and social network analysis, where relationships and behaviors often exhibit uncertainty.

Their ability to generalize traditional topology while incorporating fuzziness makes them a

powerful tool for modeling real-world systems with inherent imprecision.
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Figure 6.2: Basic Configuration of Fuzzy Image Processing

6.2 Potential Studies

The study of fuzzy topological spaces offers great potential for the development of theo-

retical and applied mathematics. It also provides valuable extensions to general topology.

By incorporating fuzziness into topological structures, fuzzy topology provides a power-

ful framework for modeling uncertainty and imprecision in complex systems. This work

highlights the fundamental properties of fuzzy topological spaces and their applications in

various fields.

In modern world, AI plays an increasingly important role such as OpenAI’s Chat GPT

and Google’s Gemini, so that the importance of fuzzy mathematics cannot be overempha-

sized. By generalizing general topological concepts to fuzzy environments, we can deepen

our understanding of the continuity, compactness and convergence of spaces reflecting the

real-world dimensions of ambiguity. Moreover, since computer computing systems, espe-

cially in the field of fuzzy control theory and decision making, need to operate under fuzzy

conditions, fuzzy topology will definitely play an important role in the future.

In the fields of data science, machine learning and artificial intelligence, fuzzy topologies

provide a natural way to deal with noisy, incomplete or imprecise data, leading to more

robust analyses and decisions. Their application also extends to the fields of biological,

social and economic modeling, where plays a crucial role in fuzzy system behavior.

Finally, the continued exploration of fuzzy topological spaces will lead to significant in-

novations in mathematical theory and practical applications, especially in areas where a
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more flexible and detailed description of reality is required. As this area of research con-

tinues to grow, it is expected to further our understanding of mathematical structures and

the complex systems we have tried to model and control.
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