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1 Combinatorics

Definition 1.1. Graph
A graph G = (V, E) is an ordered pair where V' is a set of vertices and F is a set of edges.

Example 1.2. V ={0,1,2,3,4,5,6},
E ={{0,1},{0,4},{0,5},{1,2},{1,5},{2,3},{2,6},{3,4},{3,5},{4,5}}.

Figure 1: A visual representation of the graph G (Source : figurel.com).

Theorem 1.3. Euler’s Characteristic Function
Given a connected planar graph, then we have
V-E+F=2,
where V, E, F' are respectively number of vertices, edges and faces.

Example 1.4. V =4, E =6, F = 4 which satisfies V — F + F = 2.

Figure 2: An example for Euler’s Characteristic Function (Source : figure2.com).


https://www.researchgate.net/publication/303601869/figure/fig1/AS:702475967410176@1544494730647/A-simple-graph-example-for-algorithm-illustration.png
https://upload.wikimedia.org/wikipedia/commons/2/25/Tetrahedron.png

1.1 Exercise

1. A Platonic solid (i.e. a regular polyhedron) is a polyhedron whose faces are congruent
regular polygons and such that each vertex belongs to the same number of edges. Find
all Platonic solids.

Solution. Assume the solid has V' vertices, E edges and F' faces. Each polyhedron is
a regular n-gon, and each vertex belongs to m edges. By counting vertices by edges,
we will have the formula 2F = mV where m > 3. Since each edges is shared by two
faces, then we will have 2F = nF where n > 3. By theorem 1.3, we have

2F 2F
=B+ =2
m n
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1 1 1
E:<+_> |
m n 2
1

The right hand side must be positive. In particular, % + % > 5. Without loss of

and

generality, assume m < n and we have % < % Then,
1 1 1 2
< —+-<—.
2 m n~ m

Hence, we have m = 3 and n < 6. The possibilities are (3,3),(3,4) and (3,5). By
symmetry, we will have (3, 3), (3,4), (3,5), (4,3) and (5, 3).

Polyhedron |m |n | E | V | F
Tetrahedron 313|646
Cube 314112 | 6 | 8
Dodecahedron | 3 | 5| 30 | 12 | 20
Octahedron 413112 8| 6
Icosahedron 51313020112




Octahedron

Icosahedron Dodecahedron

Tetrahedron

Figure 3: 5 regular polyhedron (Source : figure3.com)).

<

2. Each point in the plane is labelled with a real number. For each cyclic quadrilateral
ABCD in which the line segments AC and BD intersect, the sum of the labels at A
and C equals the sum of the labels at B and D. Prove that all points in the plane
are labelled with the same number.

Solution. Given a point P on the plane, let f(P) be its label. We want to prove that
f(A) = f(B) for any two points A and B on the plane. Choose three other points
P, @, and R on the plane so that the pentagon ABPQR is cocyclic. Since APQR is
cocyclic,

F(A)+ Q) = F(P)+ f(R)

Since BPQR is cocyclic,

f(B)+ f(Q) = f(P) + f(R)

Comparing the above two identities, we deduce that f(A) = f(B). <


https://i.pinimg.com/736x/60/d8/a6/60d8a6810d02c208af8655c28336b0aa.jpg

3. An ordered triple of numbers is given. It is permitted to perform the following op-

a+b a—b
eration on the triple: to change two of them, say a and b, to i and . Is

V2 ) V2
it possible to obtain the triple (1,+/2,1 + /2) from the triple (2,v/2, —) using this

V2

operation?

Solution. Notice that

a+b\> (a - b) 2,
— | + =a” +0b°.
< V2 ) V2
Hence, the sum of the squares of the three numbers is not changed after each operation.

12+<\/§>2+<1+\/§>2:6+2\/§,

2% + (x/§)2+ (\}5)2 = g

It is impossible to obtain the triple (1, /2, 1++/2) from the triple (2,/2,1/v/2) using
this operation. <

4. The number 99...99 (having 2019 nines) is written on a blackboard. Each minute,
one number written on the blackboard is factored into two factors and erased, each
factor is (independently) increased or decreased by 2, and the resulting two numbers
are written. Is it possible that at some point all of the numbers on the blackboard
are equal to 97

Solution. Notice that

99...9=10""Y —1=3 (mod 4).
——
20199’s

If a = 3 (mod 4) and a = be, then among b and ¢, one must be congruent to 1 modulo
4 and one must be congruent to 3 modulo 4. If b = 1 (mod 4), then b£2 =3 (mod 4).
In the beginning, the number on the blackboard is congruent to 3 modulo 4.

At each step, if a number a congruent to 3 modulo 4 is erased, then it is factored to
a number b that is congruent to 1 modulo 4 and a number ¢ that is congruent to 3
modulo 4. But then the number b+2 or b—2 that would be written on the blackboard
is congruent to 3 modulo 4. This means that the number of numbers congruent to 3
modulo 4 on the blackboard would not decrease after each operation. Since 9 is not
congruent to 3 modulo 4, it is impossible that all the numbers left on the blackboard
are 9. <



. There are 2000 white balls in a box. There are also unlimited supplies of white, green,
and red balls, initially outside the box. During each turn, we can replace two balls
in the box with one or two balls as follows: two whites with a green, two reds with a
green, two greens with a white and a red, a white and a green with a red, or a green
and a red with a white.

(a) After finitely many of the above operations there are three balls left in the box.
Prove that at least one of them is green.

(b) Is it possible that after finitely many operations only one ball is left in the box?

Solution. The replacements are as follows:

2W — 1G

2R — 1G

2G — 1W + 1R
1IW+1G — 1R
1G+1R — 1W

Assign the number x to a white ball, the number y to a green ball, and the number z
to a red ball. We wish that the product of the numbers on the balls remain invariant
after each replacement. Hence,

22 =22 =y
Y =2
Ty =2z
yz ==
We want z,7, z to be distinct and nonzero. Hence, z = —z, 3% = —22, 2z = zy = y°2.
Therefore, > = 1 and 2% = —1.
So x =14, z = —i, y = —1 satisfy all the conditions above.

Initially, we have 2000 white balls. The product of the number on the balls is 12900 = 1.

(a) When there are three balls left, if none of them is a green ball, then they are
either white or red balls, carrying numbers ¢ or —i. The product of these three
numbers is 7 or —¢. This is impossible. Hence, one of them must be a green ball.

(b) Since none of the balls carry the number 1, we find that it is impossible that
there is only one ball left.

<



6. Let A and B be two sets. Find all sets X with the property that

ANX=BNX=ANnB AUBUX =AUB.

Solution.
XCAUBUX =AUB.
ANB=ANnX CX.
Hence,
ANBCX CAUB.
Since

AUB=(A\B)U(B\A)U(ANB),

we consider the elements in A\ B and B\ A. If v € A\B, z ¢ ANB, hencex ¢ ANX.
Since = € A, hence = ¢ X. Similarly, if x € B\ A, z ¢ X. Hence, X = AN B. <



7. Maryam labels each vertex of a tetrahedron with the sum of the lengths of the three
edges meeting at that vertex. She then observes that the labels at the four vertices
of the tetrahedron are all equal. For each vertex of the tetrahedron, prove that the
lengths of the three edges meeting at that vertex are the three side lengths of a
triangle. [SMMC2017]

Solution. Let the four vertices be P, ), R, and S, and
PQ=a, QR=d, PR=hb,
QRS=e PS=c¢, RS=F

Let the label of the vertices be k.

Namely,
k=a+b+c (1)
=a+d+te (2)
=b+d+f (3)
=cte+ f (4)

(H+(2)—(3)—(4) gives a=f.
(1)4+(3)—(2)—(4) gives b=ce.
(1) +(4)—(2)—(3) gives c=d.

Hence, the three side lengths meeting at each vertex have lengths a, b, and c.

Since the three sides of APQR have lengths a, b, and ¢, we find that the lengths of
the three edges meeting at that vertex are the three side lengths of a triangle. |



2 Counting Method

Definition 2.1. Permutation
A permutation is an arrangement of a set of items. The number of permutations of n items
taking r at a time is given by:

Definition 2.2. Combination
A combination is a selection of objects in which the order of selection does not matter.
The number of combinations of n items taking r at a time is:

G+ () =00 = 0) oo =

Example 2.3. A class consists of 15 men and 12 women. In how many ways can two men
and two women be chosen to participate in an in-class activity?

Solution. This is a combination since the order in which the people is chosen is not
important.

Choose two men:

15 15! 15!
<2> 21(15 — 2)! _ 213!

Choose two women:

2y _ 12t 12
2 ) 21(12-2)! 210!

We want 2 men and 2 women so multiply these results. Then 105(66) = 6930.There are
6930 ways to choose two men and two women to participate. <

Example 2.4. Let m and n be two integers such that 1 < m < n. Prove that m divides
the number
m—1 n
DR ).
> - (})
k=0
Proof. We have

) e[ 6



On the other hand, we have

Hence,

S

_ meim—1ln—-2)...(n—1—-—m+1)
= o0 (m—1)!
n—1)...(n—m)

— m(_l)m—ln(

e ()

m—1
Therefore, we have proved m divides the number n Z (=1)k <Z>
k=0

m!
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2.1 Exercise

1. Find the smallest positive integer j such that for every polynomial p(z) with integer
coefficients and for every integer k, the integer
dJ

P9 (k) = —7p(@)

=k
(the j-th derivative of p(z) at k) is divisible by 2016.
Solution. Notice that if
n
p(x) = ana" + an1z" 4tz tag =Y aal
=0

is a polynomial with integer coefficients ag, a1, ..., ay,, then
PP (@)= 11 =1)...(1—j+ Daa'
I=j

Notice that if for every integer [ > j,
I
(=)

is divisible by 2016, then pU)(k) will be divisible by 2016 for all integers k. Notice
also that the combination number
(l) B !
i) (=5

must be an integer. In other words,

0—1)...(1—j+1) =

1—1)...(1—j+1) =

(L —J4)!
must be divisible by j!.

Now 2016 = 2° x 32 x 7. Hence the smallest m so that m! is divisible by 2016 is m = 8.
(7! is not divisible by 2°). Hence, when j = 8, for any [ > j, [(l —1)... (I —j + 1) is
divisible by j!, and hence, is divisible by 2016.

Given a positive integer j so that 1 < j < 7, consider the polynomial p;(z) = z7.
Then

This is not divisible by 2016.
Hence, the smallest positive integer j satisfying the condition in the question is j =
8. <

11



2. If k is a positive integer, prove that

(2:) = 7?'/02 (2sin )% dp.
6

Solution. Recall Euler’s formula ¢ = cos § +isin §, then we have 2sin§ = —i(e? —
e~"). By binomial expansion, we have

[_i(ezﬂ o e—i@)]Qk _ (_1)k: i(_l)jei@k—%)ﬁ <2k> _

=0 J
Notice that e/?F=2)0 — cos(2k — 25)8 + isin(2k — 2j)0 and sin(—2m) =
—sin(2m), cos(—2m) = cos(2m), hence we have
2k 2%k
0 —i0N2k _ (_1\k _1\ji(2k—27)6
i(e e = (-1 1)e .
(@ e = (Y (%)
]_
2k
2
= (—1)’“2( 1)’ cos(2k—2])0( k>
7=0
k—1 o
< >+Z 1)k+992 cos( 2k—2])0< >
7=0
Hence
2 [2 2k
“ 2k “ 10 0
71_/0 (2sin0)=" do 7T/0 ( i(e e )) do
9 (3 o k
= (—1)F= Z(—l)]ez(%_%) < >d9
TJo T, J
]_
z k—1
2k
= / Z k+7< )2008(2k—2j)9+<k> do.
7=0
If m is a positive integer,
™ 9 z
/2 cos 2mf df = {sm mﬁ} =0.
0 2m |

Hence,

2 [z 2k
/2(231n9)2kd9: ( )
™ 0 k;
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3. For an arithmetic sequence a1, ao,...,ay,...,let S, =a14+as+---+an, n > 1. Prove

that .

n> 2n
E ag+1 = ———Sn+1.
— <k‘ n+1

Solution. Let a1 = a and d = as — a1. Then

ag4+1 = Qa + k’d
Hence,

" /n " /n " /n " /n
> <k>ak+1 = (k) (a+kd)=a)_ <k> +dy <k>k
k=0 k=0 k=0 k=0

Since .
(Z) a* = (14 2)",
k=0
we find that

Setting z = 1 gives

Hence,

2" 1
kzo<z>ak+1:ax2"+nd><2"1:n+1 X n—2+— (2a + nd)

2n
n+1

n

Spi1.

13



4. Show that for any positive integer n, the number

o+ 1 o+ 1 o + 1
S,o= (T on 4 (T gn2 gy (T ) g
0 2 2n

is the sum of two consecutive perfect squares.

Solution. Since
2n+1

a2 (P
; J
7=0
2n+1 .
(2 o \/§)2n+1 _ Z (_1)j <2n —|— 1) 2n+1—j3%’
- J
7=0

we find that

(2 + \/§)2n+1 4 (2 _ \/§)2n+1

Sp = 1

Notice that

2+v3)r= Y (n) 277935 +v/3 ) <n> 9m=i3'5" = ay + b3,
0<j<n 0<j<n N
j even j odd

where a,, and b, are integers. It follows that
(2 —V3)" = a, — b,V3.
Since (24 v/3)(2 — V3) = 1, we find that
(an + bpV/3)(an — byV/3) = 1.
Hence,

a2 =1+ 3b2.

Moreover,

(24 V3)(an +bav3)* + (2 = V3)(an — byV/3)?
4
(24 v3)(a2 + 3b2 + 2a,b,V/3) + (2 — V/3)(a2 + 3b2 — 2a,b,V/3)
4

Sp =

Za% + 6a,b,\/3 + 6a,b,
2

a2 + 3b% + 6a,by, + 6b2
2

(an + bn)2 +1

—

14



Notice that a; + b1v3 = 2+ /3. Hence, a; = 2 and b; = 1, and a,, + b, is odd.

g1 + bns1V3 = (24 V3)(an + buV'3) = 2ay, + 3b, + (an + 2b,)V3.

Hence,
nt+1 = 2apn + 3byp,  bpy1 = an + 20,

This implies that
an+1 + b1 = 3(an + by) + 2by,.

From this, we see that a,4+1 + by41 has the same parity as a, + b,. Since a; + by is
odd, a, + b, is odd for all n.
Define
S an + 3b, — 1
n — 2 .
Then z,, is an integer. Moreover,
a2 4+ 3b2 + 1+ 6ayb, +6b2  (an +3b,)% + 1

z2 + (zn +1)? = 5 = 5 = Sp.

This proves that S, is a sum of two consecutive perfect squares. |

15



5. If n indistinguishable balls are distributed in m distinguishable boxes, how many ways
are there? How many ways are there in which k& of the boxes remain empty?

Solution. To put n indistinguishable balls into m distinguishable boxes, the number
of ways is the same as the number of nonnegative integral solutions to the equation

1 +2Xo2+ -+ Ty, =N,

m+n—1
m-—1 )
If exactly k boxes are empty, k must be less than m. The number of ways to distribute

the n balls into the remaining m — k boxes so that no box is empty is the same as the
number of positive integer solutions to the equation

which is

r1+x2+ -+ Tk =N,

()

m
Since there are ( k) ways to choose the k empty boxes, the number of ways where

which is

exactly k of the boxes remain empty is

(050

16



6. If n distinguishable balls are distributed in m distinguishable boxes, how many ways
are there? How many ways are there in which k£ of the boxes remain empty?

Solution. The number of ways to distribute n distinguishable balls in m distinguish-
able boxes is m".
If exactly k& boxes are empty, we must have k < m.

Let the boxes be By, Ba,..., By, and let E; be the event that the box B; remains
empty. By the inclusion-exclusion principle, the number of ways that exactly k& boxes
are empty is

N= > nBy,n--NB,)- > n(B,Nn---NBy,NB;,,)

i< <ig 1< <igy1

+(—1)milik Z n(Bi, N---NB; ).

1< <lpm—1

n(B;;N---NBy;) is the number of ways that the j boxes B;,, ..., B;; are empty. So each
of the n balls can be put into the remaining (m — j) boxes. Hence, n(B;, N---NB;,) =

(m —3)"

Therefore,

—_

m—

N = S (o

=k

17



3 Probabilities

Definition 3.1. Probability P of an event is defined as

number of event

b= number of all possible outcomes

Theorem 3.2. Given two events A and B, then
P(AUB)=P(A)+P(B)—-P(ANB)
P(ANnB)=P(A)P(B|A)

Theorem 3.3. Bayes’ Theorem

Let Fy, Es, ..., E, be a set of events associated with a sample space S, where all the events
FEh, Es, ..., E, have nonzero probability of occurrence and they form a partition of S. Let
A be any event associated with S, then Bayes theorem says that
P(E;)P(A|E;
> k=1 P(ER)P(A|E})

P(A)= —— , P(BIA)= ——

P(E)= -, P(AIB)=

P(A)PBIA) = - x } =

PE)PAB)= 2 x éj .

= P(A)-P(BIA), ie.
7\
P(BIA) = P—(—)—(J—)Bp'af B

Figure 4: Bayes’ Theorem visualization when n = 2 (Source : figure4.com).
Example 3.4. In a selection test, each of three candidates receives a problem sheet with
n problems from algebra and geometry. The three problem sheets contain, respectively,

one, two, and three algebra problems. The candidates choose randomly a problem from
the sheet and answer it at the blackboard. What is the probability that:

(a) all candidates answer geometry problems;
(b) all candidates answer algebra problems;

(c) at least one candidate answers an algebra problem?

Solution.

18


https://upload.wikimedia.org/wikipedia/commons/c/c9/Bayes_theorem_visual_proof.svg

(a) Since three problem sheets contain, respectively, one, two, and three algebra problems,
hence the probability of all candidates answer geometry problems is

PA:n—l Xn—QXn—?): (n—l)(n—32)(n—3).
n n n n

(b) Since the problem is either algebra problem or geometry problem, hence the proba-
bility of all candidates answer algebra problems is

(c¢) By definition, sum of all possibilities is equals to 1. Hence, the probability that at
least one candidate answers an algebra problem is

Po=1— Py
(n—1)(n—2)(n—3)
=1 B
n
6n2 —11n+6
I B

<

Example 3.5. A man is known to speak the truth 2 out of 3 times. He throws a die and
reports that the number obtained is a four. Find the probability that the number obtained
is actually a four.

Solution. Let A be the event that the man reports that number four is obtained. Let F4
be the event that four is obtained and FEs be its complementary event.

1 5 2 1
Then, P(E;) = 6 and P(Ey) = 1— P(Ey) = 6 Also, P(A|E)) = 3 and P(A|Es) = 3
By using Bayes’ theorem, probability that number obtained is actually a four is

P(Ey)P(A|EY)
A|Ey) + P(E2)P(A|Es)

P(E1|4) =

&

)P(

I
X
[SUIN (e
+ | X
olut|eeln
X
Wl

N ol
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3.1 Exercise

1. An exam consists of 3 problems selected randomly from a list of 2n problems, where
n is an integer greater than 1. For a student to pass, he needs to solve correctly at
least two of the three problems. Knowing that a certain student knows how to solve
exactly half of the 2n problems, find the probability that the student will pass the
exam.

Solution. Denote by A; the event the student solves correctly exactly i of the three
proposed problems, ¢ = 0, 1,2,3. The event A whose probability we are computing is

A=Ay U As,

and its probability is
P(A) = P(A3) + P(As),

since Ay and As are mutually exclusive.

Because the student knows how to solve half of all the problems,

P(Ag) = P(A3), P(A1) = P(4).

Since

P(Ag) + P(Ay) + P(A) 4+ P(A3) =1,

we find that
2(P(Az) + P(As)] = 1.

It follows that the probability we are computing is

P(A) = P(Ay) + P(As) = %

20



2. The probability that a woman has breast cancer is 1%. If a woman has breast cancer,
the probability is 60% that she will have a positive mammogram. However, if a woman
does not have breast cancer, the mammogram might still come out positive, with a
probability of 7%. What is the probability for a woman with a positive mammogram
to actually have cancer?

Solution. Let E be the event that the woman has breast cancer, and let F' be the
event that the test is positive.

P(E|F) = P(If(;)F)

_ P(F | E)P(E)

~ P(F | E)P(E) + P(F | E¢)P(E")
B 0.01 x 0.6

~0.01 x 0.6 +0.07 x 0.99

= 0.0797.

21



3. For each positive integer n, consider a cinema with n seats in a row, numbered left
to right from 1 up to n. There is a cup holder between any two adjacent seats and
there is a cup holder on the right of seat n. So seat 1 is next to one cup holder, while
every other seat is next to two cup holders. There are n people, each holding a drink,
waiting in a line to sit down. In turn, each person chooses an available seat uniformly
at random and carries out the following:

(a) If they sit next to two empty cup holders, then they place their drink in the left
cup holder with probability 1/2 or in the right cup holder with probability 1/2.

(b) If they sit next to one empty cup holder, then they place their drink in that
empty cup holder.

(c) If they sit next to zero empty cup holders, then they hold their drink in their
hands.

Let p,, be the probability that all n people place their drink in a cup holder. Determine
p1+p2+p3+.... [SMMC2018]

Solution. Obviously, p; = 1.

When n = 2, we should consider the cases where the first person chooses seat 1 or seat
2, both with probability 1/2. If the first person chooses seat 1, he would definitely
put his drink in the right cup holder. The second person would then choose seat 2
and place his cup in the right cup holder. If the first person chooses seat 2, in order
for the second person to place his cup in the right cup holder, the first person has to
put his cup in the right cup holder. This happens with probability 1/2. Hence,

1 1

=—-—Xx14+-=x
pr=g5 X1ty

3

1

DN |

Now for general n, it is obvious that everyone can place their drinks in a cup holder
if and only if everyone seated chooses to put his drink in the right cup holder. We
calculate the probability by conditioning on the seat number that the first person
chooses. The first person will choose seat k, 1 < k < n, with probability 1/n.

If £ = 1, the first person will put his drink in the right cup holder.In this case, the
remaining n — 1 people can each put their drink in a cup holder with probability p,_i.

For k > 2, if the first person puts his cup in the left cup holder, then not everyone of
the remaining n — 1 people can have his drink put in a cup holder. If the first person
puts his drink in the right cup holder, which happens with probability 1/2, then for
the remaining n — 1 people, k — 1 will be seated to the left of seat k, and n — k would
be seated to the right.

22



For each combination of kK — 1 people that are seated on the left, the probability
that everyone has his drink put in a cup holder is pi_1, and for each combination of
n — k people seated on the right, the probability that everyone has his drink put in
a cup holder is p,_. Since each combination is equally likely, in this situation, the
probability that everyone has his drink put in a cup holder is pr_1p,—k-

Therefore,

1 1
Pn=—Pn-1+7— ) Pk-1Pn—k, N =2
n 2n pt

by using the convention that pg = 1. In other words,
n—1

3 1
Pn=5-Po1t oo 2 Piipnok = 5 pn 1+ Zpkpn 1k

Define the generating function
oo
=2 _paa"
n=0
Then the recursion relation for p, gives

) 1
Z npnxnil = 5 an—lxnil +
n=1 n=1

oo n—1

+k—1
E pkpn—l—kxn .
n=1 k=0

N

This implies that

Solving the initial value problem

f'(=) _ 1

@ iy -~z T
we find that
g 2@ _ e
1+ f(z) 2

This implies that

2(1) _
[ETOAS

23



or equivalently,
Ve

0= 520

Hence,
2Ve 1)

pr+p2tps+-=f(1)—po= 5 Ve

24
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